On the spectral synthesis for the unit circle in ${\mathcal F} L_s^q ({\mathbf R}^2)$
Seminari di Analisi Matematica dell'Università e del Politecnico di Torino
Date: Thursday, 23 November 2023 14:30 - 15:30
Venue: Masaharu Kobayashi - Aula 1 (Dipartimento di Matematica, Università di Torino)
Let ${\mathcal F}L^q_s ({\mathbf R}^2)$ denote the set of all tempered distributions
$f \in {\mathcal S}^\prime ({\mathbf R}^2)$ such that the norm $ \| f \|_{{\mathcal F}L^q_s} = (\int_{{\mathbf R}^2} ( |{\mathcal F}[f](\xi)| ( 1+ |\xi| )^s )^q d \xi )^{ \frac{1}{q} }$ is finite, where ${\mathcal F}[f]$ denotes the Fourier transform of $f$. We investigate the spectral synthesis for the unit circle $S^1 \subset {\mathbf R}^2$ in ${\mathcal F}L^q_s ({\mathbf R}^2)$. This is joint work with Prof. Sato (Yamagata University).
Speaker
Masaharu Kobayashi
Affiliation
Hokkaido University
Room
Aula 1
Proposed by
Elena Cordero
Powered by iCagenda